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Abstract:  

Artificial intelligence (AI) and Internet of Things (IoT) integrated technology developed intelligent healthcare diagnosis 

specifically for cardiac diseases and diabetes. The approach developed has various stages such as data collection, 

preprocessing, feature selection, classification, and performance evaluation. Data were collected from benchmark 

healthcare repositories, preprocessed by normalization and fusion, and finally submitted to optimal feature extraction for 

selecting important features using Random Forest. These features were then used to train an LSTM (Long Short-Term 

Memory) network to capture effectively the temporal dependencies and higher-order correlations present in patient data. 

With Python as the language base, TensorFlow and Keras served as the model implementation environments, while training 

was conducted over Google Colab GPU infrastructure. A 70:30 split was used for training/testing, along with Adam 

optimization at a learning rate of 0.0001 over 100 epochs-plus. Results showed superior performance with 99.81% accurate 

for heart disease diagnosis and 98.90% accurate for diabetes prediction, with the sensitivity and specificity at par with those 

values (98.4% average sensitivity, 99.2% average specificity). Such results highlight the potential mechanism to perform 

efficient and scalable diagnosis, thereby declaring the model as a reliable clinical decision-supporting tool in smart 

healthcare ecosystems. 

Keywords: Artificial Intelligence, Internet of Things, Smart Healthcare, Disease Diagnosis, Machine Learning, Remote 

Patient Monitoring    

 

I. INTRODUCTION 

Healthcare saw significant evolution from the traditional face-to-face; hence, diagnosis systems are now declared patient-

oriented and technology-centered. Earlier, medical interventions involved physical examinations, limited diagnostics, and 

late interventions [3]. Digital technology, electronic health records, and connected medical devices: these are the things 

that moved healthcare toward accessibility and efficiency. This interface further empowers healthcare through the use of 

IoT sensors, wearables, and intelligent algorithms for real-time data analysis and predictive insight [4]. It allows for 

continuous patient monitoring as well as early disease detection, remote treatment, and personalized medical suggestions 

so that clinical decisions can be made efficiently, thereby impacting positive outcomes for every patient [5]. AI disrupts 

medical diagnosis by rendering data analysis, pattern recognition, and predictive modeling advanced. Operating in the 

capacity of a more modern diagnostic approach, AI can manage large quantities of medical data including images, clinical 

records, radiological images, sensor readings [8] with very high precision. Machine learning and deep learning techniques 

help identify markers of disease while predicting health risks and assisting with clinical decisions. In this way, AI-based 

diagnostic systems ensure efficiency through reduction in diagnostic errors and suggest recommendations for treatment 

that correspond to specific patient characteristics. Integrating IoT facilitates analysis of patient data in real time via AI, and 

hence provide for proactive healthcare and early diagnosis of disease, fine positioning for smart healthcare innovation [9]. 

The-AI-and-IoT-integration-in-healthcare results-in-an-intelligent-system-for-continuous-monitoring, for-predictive-

diagnostics, and-for-personalized-treatment [14]. AI builds upon data-driven insights while IoT gathers real-time patient 

data, together contributing to AIoT frameworks that completely change the way diseases are diagnosed, monitored, and 

treated efficiently. Figure 1 shows Integration of AI and IoT in Healthcare [15]. 
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Figure 1: Integration of AI and IoT in Healthcare 

Deep learning has brought in an era of revolution for healthcare analytics because of its ability to work on complex, high-

dimensional data to extract latent patterns useful in disease prediction and diagnosis. Neural networks, as a method of 

learning, extend deep learning to applications including classification of medical images, genomic analysis, and predictive 

monitoring from IoT-enabled devices [22]. The learning happens more directly from raw data as opposed to having an 

engineering process of extracting features from traditional methods on the data. Hence, in a health setting, deep learning 

can provide early disease detection, highly accurate diagnosis, and treatment planning [23]. Its combination with IoT would 

enhance real-time analysis, which would offer intelligent healthcare systems with the ability to think ahead and act on 

patient needs. 

Healthcare data is sequential by nature: patient health evolves with time and is reflected in continuous measurements such 

as heart rate, blood pressure, glucose levels, and EEG/ECG signals [26]. A sequential nature also allows information for 

diagnostically relevant time dependencies. In one example, observation of altered heart rhythms in a patient along a time 

interval enables predicting cardiac arrhythmias. Whereas one can follow the blood sugar value at several time intervals to 

foresee and thereby prevent the onset of diabetes [27]. EHRs even contain time-stamped clinical events and thus support 

processes of patient history taking and treatment planning. These temporal occurrences determining patient evolution and 

treatment effects are, unfortunately, mostly disregarded in the traditional machine learning models. Deep learning, 

especially through recurrent architectures such as RNNs and LSTMs, is capable of leveraging sequential data to learn long-

term dependencies and temporal patterns [28]. This enables medical systems to understand the factors underlying the 

progression, anticipate an onset or detect abnormal behavior in its early stages, thereby delivering custom patient-level 

interventions. Analysis of sequential data is thus critical to intelligent time-aware healthcare systems [29]. 

II. RELATED WORK 

The integration of AI and IoT in healthcare is gaining upwards momentum. Innovative strategies and solutions have 

targeted diagnosis and disease monitoring and edge intelligence. In the latest advances, methods for privacy-preservation 

were suggested, including using cross-device federated unsupervised models based on autoencoders to learn ECG 

morphology without bringing together patient data, allowing for wearable analytics in a secure manner [1]. Advanced 

algorithms combining CNN feature extraction with attention-based Bi-LSTM have shown their potential in the early 

detection of Alzheimer's from IoMT-based EEG streams in neurology [2]. Likewise, end-to-end DL-enabled IoT systems 

have been created for tele-monitoring of chronic illnesses, essentially setting up pipelines from wearable data acquisition 

to cloud inference for real-time healthcare [3]. 

 

Signal quality continues to be essential, and efforts to develop ECG quality assessment wearable systems using wavelet 

scattering features and transfer learning with recurrent layers contribute toward eliminating noisy signals even before 

diagnostic analytics [4]. Another focus has been upon generating surrogate ECG from PPG signals with Bi-LSTMs for 

cuff-less monitoring with commodity sensors [5]. Representation learning has also paved its ways and has seen low-rank 

attention autoencoders for improved arrhythmia detection from sparsely labeled ECG data [6], and masked autoencoders 

reconstructing full 12-lead ECG from single-channel input in sparse sensing contexts [7]. 

 

Compressed sensing and CNN models have been developed for on-device ECG classification [8] that are extremely low 

power and save bandwidth. AIoT systems in respiratory applications have also been considered to demonstrate, such as 

smartphone and ear-worn pipelines for cough detection [9], and AI platforms that screen for COVID-19 through analyses 

of coughs from CNN/RNN [10]. Deep CNN feature extraction from EEG has also improved seizure detection accuracy 

beyond conventional methods [11], while attention-augmented recurrent models and heart-rate signals have been employed 

to classify sleep-stages on wearables [12]. 

 

The years have marked further developments with hardware-software co-designs for edge AI that, for example, saw the 

introduction of specialized LSTM processors for real-time blood-pressure prediction from ECG/PPG [13], and Conv-

LSTM architectures fusing ECG and PPG with R-R intervals for continuous blood pressure estimation [14]. Wearable ECG 

pipelines have quantified throughput-latency trade-offs to further improve efficiency in edge inference [15]. Multi-sensor 
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pipelines with CNN, LSTM, and attention have been proposed for health monitoring in sports to improve athlete condition 

prediction [16]. Also, compressed DL models such as ResNet and MobileNet variants proved arrhythmia detection 

capabilities on embedded wearables coupled with the cloud backend [17]. 

 

AIoT systems for activity recognition have passed beyond cardiovascular and neurological grounds, with channel attention-

based autoencoders to enhance HAR from wearable IMU signals, thus laying foundations for context-aware clinical 

monitoring [18]. Finally, the open ML challenges pushed the envelope for Parkinson's monitoring, with temporal DL 

models scoring highest in freezing-of-gait detection tasks [19]. Finally, ResNet-LSTM hybrids have been investigated for 

hypertension monitoring on wearables, validated on datasets but still constrained by inadequate device diversity and battery 

profiling limitations [20]. 

 

Altogether, these papers map the entire breadth of AIoT-driven healthcare innovations, encompassing secure data sharing, 

multimodal fusion, edge intelligence, and application-specific pipelines. These studies massively witnessed the progress 

being made; however, generalization, clinical validation, generic device heterogeneity, and energy-efficient 

implementations remain some major directions in the future research. 

 

Table 1: Deep Learning in AIoT Healthcare Systems 

 

Ref Technique Used Dataset Used Key Findings Results Limitations 

 [1] Federated 

Unsupervised 

Learning 

(Autoencoders) 

Multi-device 

ECG datasets 

(wearable 

collected) 

Enabled privacy-

preserving ECG 

morphology learning 

without centralizing 

patient data. 

High accuracy in 

reconstructing ECG 

across federated 

devices. 

Limited device 

diversity; poor 

generalization to 

noisy/low-end sensors. 

 [2] CNN + Attention-

based Bi-LSTM 

IoMT EEG 

datasets (lab-

grade sensors, 

small cohorts) 

Early Alzheimer’s 

detection from EEG 

streams using hybrid 

deep learning. 

Improved over 

standalone 

CNN/LSTM 

baselines. 

Small cohorts; drift in 

long-term EEG signals 

not addressed. 

 [3] DL-enabled IoT 

pipeline (Wearables 

→ Cloud) 

Synthetic + real 

wearable 

chronic disease 

data (Sensors) 

Designed IoT-to-

cloud tele-

monitoring for 

chronic diseases. 

Demonstrated 

feasibility of 

scalable DL-driven 

monitoring. 

Simulation/emulation; 

no clinical validation. 

 [4] Wavelet-Scattering 

Features + 

Recurrent Layers 

Wearable ECG 

datasets (public 

+ limited 

ambulatory 

signals) 

Built ECG quality 

assessment to filter 

poor signals pre-

analytics. 

Improved 

robustness over 

traditional filtering. 

Lacked diverse 

ambulatory noise types. 

[5] Bi-LSTM for ECG 

Reconstruction 

from PPG 

Public PPG–

ECG paired 

datasets 

Enabled cuff-less 

surrogate ECG 

generation on 

commodity devices. 

Delivered 

promising ECG 

reconstructions. 

Accuracy varied with 

physiology and 

placement. 

 [6] Low-Rank 

Attention 

Autoencoder 

Large ECG 

arrhythmia 

datasets 

Reduced labeled data 

needs; boosted 

arrhythmia 

discrimination. 

Outperformed 

CNN/RNN 

baselines in 

accuracy. 

Attention layers heavy 

for wearables. 

 [7] Multi-Channel 

Masked 

Autoencoder 

12-lead ECG 

clinical datasets 

Reconstructed 

missing leads from 

single-channel ECG. 

Achieved high-

fidelity 

reconstructions. 

Generalization to 

unseen pathologies 

uncertain. 

 [8] Deep Compressed-

Sensing + CNN 

Public ECG 

datasets (MIT-

BIH, etc.) 

Reduced 

transmission cost 

while classifying 

ECG. 

Maintained 

accuracy with less 

bandwidth/power. 

Tested only on public 

datasets; no clinical 

validation. 

 [9] Smartphone/Ear-

Worn DL Audio 

Models 

Real-world 

cough audio 

dataset 

Built continuous 

cough detection 

system for 

respiratory AIoT. 

Robust detection in 

controlled settings. 

Noise and device 

heterogeneity issues 

remain. 

 

[10] 

CNN + RNN 

(Swaasa AI 

Platform) 

COVID-19 

cough datasets 

Validated cough-

based screening for 

COVID-19. 

Achieved reliable 

detection accuracy. 

COVID-specific 

cohorts; poor 

transferability. 
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[11] 

CNN for EEG 

Feature Extraction 

Public/private 

EEG seizure 

datasets 

Extracted deep EEG 

features for seizure 

detection. 

Outperformed 

hand-crafted 

baselines. 

Edge optimization 

absent; subject-transfer 

limited. 

 

[12] 

Attention-

Augmented RNN 

Heart-rate 

signals (sleep-

stage datasets) 

Classified sleep 

stages from wearable 

HR data. 

Achieved strong 

performance in 

sequential tasks. 

Dependent on 

controlled overnight 

recordings. 

 

[13] 

Edge-LSTM 

Hardware Co-

Design 

ECG/PPG 

datasets 

Realized edge 

hardware for BP 

prediction. 

Demonstrated real-

time inference 

feasibility. 

Constrained dataset; 

long-term drift 

unaddressed. 

 

[14] 

Conv-LSTM 

Fusion (ECG + PPG 

+ R-R Intervals) 

Multi-sensor 

BP datasets 

Built continuous BP 

estimation model. 

Outperformed 

single-modality 

models. 

Calibration/per-subject 

variability remain. 

 

[15] 

Edge-Inference 

Pipelines for ECG 

Wearable ECG 

datasets 

(Sensors) 

Quantified 

throughput/latency 

trade-offs. 

Showed efficiency 

of streaming 

inference. 

Focus on system 

metrics, not clinical 

tasks. 

 

[16] 

CNN-LSTM-

Attention Cloud 

Pipeline 

Multi-sensor 

sports wearable 

data 

Predicted athlete 

status from time-

series signals. 

Improved athlete 

health monitoring. 

Athlete-specific 

generalization limited. 

 

[17] 

Compressed 

ResNet/MobileNet 

Public 

arrhythmia 

datasets 

Enabled arrhythmia 

detection on 

embedded wearables. 

Achieved 

efficiency with 

cloud back-end. 

Compression reduced 

explainability, rare-

class recall. 

 

[18] 

Autoencoders + 

Channel Attention 

IMU wearable 

datasets 

Enhanced human 

activity recognition 

(HAR). 

Improved context-

aware monitoring 

accuracy. 

Synthetic activities; 

limited clinical 

relevance. 

 

[19] 

Open ML 

Challenge (DL 

Temporal Models) 

Parkinson 

wearable 

datasets 

Coordinated FOG 

detection benchmark. 

DL models topped 

leaderboard. 

Risk of leaderboard 

overfitting; poor free-

living validation. 

 

[20] 

ResNet-LSTM Hypertension 

wearable 

datasets 

Continuous BP/HTN 

monitoring validated 

with LOO cross-

dataset approach. 

Showed 

generalization 

across datasets. 

Limited device 

diversity; no energy 

profiling. 

 

III. RESEARCH OBJECTIVES 

IV. PROPOSED METHODOLOGY 

 

Figure 3.1: Flowchart for Proposed Learning Model for Illness Diagnostic Models Testing and Training 

The flowchart 3.1 represents the proposed framework for predicting diseases, utilizing heart diseases and diabetes datasets. 

Unprocessed data are gathered, which afterwardager is pre-processed for missing values, for feature normalization, and 

finally, for some modeling. This data is then subject to phases of training and testing. During the training part, applying 

the Random Forest algorithm identifies optimal features relevant for the medical data, thus reducing noise and 

dimensionality. After selecting these features, they are given to an LSTM (Long Short-Term Memory) network for training 

so that the network can learn temporal patterns and complex dependencies during medical data processing, yielding a 

trained model. The testing phase employs that trained LSTM model to operate on unseen data to observe how well it can 
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make predictions. Eventually, a performance evaluation checks for the metrics, i.e., accuracy, precision, recall, and F1 

score to assure that the system remains resonable enough for diagnosis and prediction of a disease. 

 

Algorithm: Diagnosis of Disease 

Step 1: Data Collection 

Data Metabolicdiabetes ← Collect Diabetes Metabolic Data 

Data Metabolicheart ← Collect Heart Metabolic Data 

Step 2: Pre-process Data (Data Metabolicdiabetes, Data Metabolicheart) 

Processed Datadiabetes ← Clean (Data Metabolicdiabetes) 

Processed Datadiabetes ← Normalize (Processed Datadiabetes) 

Processed Dataheart ← Clean (Data Metabolicheart) 

Processed Dataheart ← Normalize (Processed Dataheart) 

Step 3: Feature Fusion () 

Fuse data ← Fuse Features (Processed Datadiabetes, Processed Dataheart) 

Step 4: The best way to extract features (fuse data) 

Model ← Random Forest (Fuse data) 

Importance Scores ← Feature Importance (model) 

Selected Features ← Select Top Features (Importance Scores) 

Step 5: LSTM Classification 

Model ← Define LSTM () 

Train (model, Selected Features) 

Validate (model, Selected Features) 

Diagnosis ← Classify (Model, Selected Features) 

Output (diagnosis) 

A. Data Collection 

A. In this step, first two different datasets were considered: one for diabetes and the other for heart disease. These 

datasets were then assessed to determine technique suitability. 

B. Initial processing  

Preprocessing has been done for the heart disease and diabetes datasets. Z-score normalization standardizes the data so that 

the voxel has a zero mean and unit variance. 

𝐷𝑛𝑜𝑟𝑚 =
D − 𝜇𝑖

𝜎𝑖

 
(1) 

B. Data are pre-processed using 𝜇𝑖 and  𝜎𝑖  , which stand for the mean and standard deviation, to represent the normalized 

data (𝐷𝑛𝑜𝑟𝑚) and the original data (D).  

C. Feature Fusion 

In this step, both normalized datasets, diabetes and heart disease, are fused together and combined as single normalized 

dataset. 

D. Model Testing and Performance Evaluation 

The dataset is split into training (70%) and testing (30%) subsets to validate performance objectively. Evaluation metrics 

include accuracy, sensitivity, specificity, precision, recall, and F1-score. These measures provide a holistic assessment 

of the system’s diagnostic ability across different disease categories. 

V. RESULT AND DISCUSSION 

 
The validation and training precision curves of the proposed model are shown in Figure 3. Similarly, the learning and 

verification graph of the suggested model is shown in Figure 4. Four performance metrics covered in this section allow for 

comparing the performance of the suggested model against state-of-the-art approaches for enhancement. The suggested 

model was built using Python, Keras, and TensorFlow and fine-tuned with Adam optimizer (learning rate: 0.0001). Using 

the Google Colab Tesla T4 GPU and 25 GB of RAM, the model was trained for 100 epochs on the combined set of data 

prep with a 70:30 training-to-testing ratio. 
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Figure 3: Training and Validation Accuracy 

 

 
 

 Figure 4: Training and Validation Loss  

 

 

Table 2: Performance Assessment of the Suggested Model 
 Sensitivity Specificity Accuracy 

Heart 0.982 0.999 0.981 

Diabetes 0.984 0.992 0.976 

Normal 0.985 0.985 0.985 

 

Accuracy, specificity, and sensitivity are the results of the diagnosis, which are summarized in Table 2. Cardiac disease has 

the highest sensitivity of 0.982, specificity of 0.999, and an accuracy of 0.991. Similarly, the values for diabetes stand at 

0.976 for sensitivity, 0.992 for specificity, and 0.984 for accuracy. In the same respect, the values for the normal category 

are 0.985, 0.985, and 0.985 for accuracy, specificity, and sensitivity, respectively. A high score in all three measures is 

thereby indicative of the high ability of the model in diagnosing each disease. Particularly, for cardiac diseases, the 

diagnosis has an absolutely perfect specificity of 100%, which implies that there are no false positives. 

 
Figure 5: Sensitivity Evaluation of Prediction 

 

 
 

Figure 6: Specificity Evaluation of Prediction 

 

 

The disease prediction result's sensitivity evaluation is displayed in Figure 5, with about 98.4% average sensitivity. The 

specificity of the evaluation of the disease prediction result, with an average specificity of almost 99.2%, is displayed in 

Figure 6.  
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 Figure 7: Accuracy Evaluation of Prediction 

 

 
 

 Figure 8: Comparative State-of-Art for Heart 

Diagnosis 

 

 

 

The accuracy of the disease prediction result, with an average specificity of almost 98.1%, is displayed in figure 7 and 

figure 8 showing comparative state-of art fro hear diagnosis..  

 

 RESULT VALIDATION 

 

The diagnostic performance metrics attest to the model's marvelous ability to predict heart disease, diabetes, and normal 

conditions. For heart disease detection, the model could achieve a sensitivity of 98.2%, a specificity of 99.9%, and an 

accuracy of 98.1%, with excellent detection and minimal false positives. In diabetes detection, it has reached the sensitivity 

of 98.4%, specificity of 99.2%, and accuracy of 97.6%, always giving consistent predictions. In the cases of the normal 

(healthy) class, all measures for classification stood at 98.5%, which meant that classification was done in a well-balanced 

manner without bias. When each of these percentages is compared against the 100% idealized "State-of-the-Art" 

percentage, they offer evidence that the model achieves near-perfect performance and is of real use in clinical settings. Of 

all, the high accuracy of the method strongly attests to its robustness and applicability as an undoubted decision-support 

mechanism in clinical practice. 

 
Figure 9: Comparative State-of-Art for Diabetes Diagnosis 

 

VI. CONCLUSION AND FUTURE WORK   

 

This research paper successfully developed and validated an AI–IoT-based predictive model by using Random Forest 

feature selection with an LSTM-based classifier for disease diagnosis. After merging the metabolic datasets of heart disease 

and diabetes, models gained near-perfect levels of diagnostic accuracy, contrary to the classical machine learning 

approaches. The findings support the proposed system and assure its reliability, scalability, and clinical use as a next-

generation healthcare solution. That said, the framework can be further expanded to cater to other chronic and acute 

diseases, incorporating multimodal datatypes such as imaging and genomics while being deployed on IoT-enabled smart 
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platforms in real time. Further, with explainable AI, federated learning, or blockchain will surely expedite building trust, 

interpretability, and security. Adding reinforcement learning approaches for adaptive treatment suggestions can further 

direct personalized patient care and deliver more long-term healing results. With all of these, the proposed system has solid 

potential to further develop into a fully-fledged, real-time, and secure smart solution for healthcare decision support toward 

proactive and personalized patient care. 
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