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Abstract:

Artificial intelligence (Al) and Internet of Things (IoT) integrated technology developed intelligent healthcare diagnosis
specifically for cardiac diseases and diabetes. The approach developed has various stages such as data collection,
preprocessing, feature selection, classification, and performance evaluation. Data were collected from benchmark
healthcare repositories, preprocessed by normalization and fusion, and finally submitted to optimal feature extraction for
selecting important features using Random Forest. These features were then used to train an LSTM (Long Short-Term
Memory) network to capture effectively the temporal dependencies and higher-order correlations present in patient data.
With Python as the language base, TensorFlow and Keras served as the model implementation environments, while training
was conducted over Google Colab GPU infrastructure. A 70:30 split was used for training/testing, along with Adam
optimization at a learning rate of 0.0001 over 100 epochs-plus. Results showed superior performance with 99.81% accurate
for heart disease diagnosis and 98.90% accurate for diabetes prediction, with the sensitivity and specificity at par with those
values (98.4% average sensitivity, 99.2% average specificity). Such results highlight the potential mechanism to perform
efficient and scalable diagnosis, thereby declaring the model as a reliable clinical decision-supporting tool in smart
healthcare ecosystems.

Keywords: Artificial Intelligence, Internet of Things, Smart Healthcare, Disease Diagnosis, Machine Learning, Remote
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1. INTRODUCTION

Healthcare saw significant evolution from the traditional face-to-face; hence, diagnosis systems are now declared patient-
oriented and technology-centered. Earlier, medical interventions involved physical examinations, limited diagnostics, and
late interventions [3]. Digital technology, electronic health records, and connected medical devices: these are the things
that moved healthcare toward accessibility and efficiency. This interface further empowers healthcare through the use of
loT sensors, wearables, and intelligent algorithms for real-time data analysis and predictive insight [4]. It allows for
continuous patient monitoring as well as early disease detection, remote treatment, and personalized medical suggestions
so that clinical decisions can be made efficiently, thereby impacting positive outcomes for every patient [5]. Al disrupts
medical diagnosis by rendering data analysis, pattern recognition, and predictive modeling advanced. Operating in the
capacity of a more modern diagnostic approach, Al can manage large quantities of medical data including images, clinical
records, radiological images, sensor readings [8] with very high precision. Machine learning and deep learning techniques
help identify markers of disease while predicting health risks and assisting with clinical decisions. In this way, Al-based
diagnostic systems ensure efficiency through reduction in diagnostic errors and suggest recommendations for treatment
that correspond to specific patient characteristics. Integrating 10T facilitates analysis of patient data in real time via Al, and
hence provide for proactive healthcare and early diagnosis of disease, fine positioning for smart healthcare innovation [9].
The-Al-and-loT-integration-in-healthcare  results-in-an-intelligent-system-for-continuous-monitoring,  for-predictive-
diagnostics, and-for-personalized-treatment [14]. Al builds upon data-driven insights while 10T gathers real-time patient
data, together contributing to AloT frameworks that completely change the way diseases are diaghosed, monitored, and
treated efficiently. Figure 1 shows Integration of Al and loT in Healthcare [15].
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Figure 1: Integration of Al and loT in Healthcare

Deep learning has brought in an era of revolution for healthcare analytics because of its ability to work on complex, high-
dimensional data to extract latent patterns useful in disease prediction and diagnosis. Neural networks, as a method of
learning, extend deep learning to applications including classification of medical images, genomic analysis, and predictive
monitoring from loT-enabled devices [22]. The learning happens more directly from raw data as opposed to having an
engineering process of extracting features from traditional methods on the data. Hence, in a health setting, deep learning
can provide early disease detection, highly accurate diagnosis, and treatment planning [23]. Its combination with 10T would
enhance real-time analysis, which would offer intelligent healthcare systems with the ability to think ahead and act on
patient needs.

Healthcare data is sequential by nature: patient health evolves with time and is reflected in continuous measurements such
as heart rate, blood pressure, glucose levels, and EEG/ECG signals [26]. A sequential nature also allows information for
diagnostically relevant time dependencies. In one example, observation of altered heart rhythms in a patient along a time
interval enables predicting cardiac arrhythmias. Whereas one can follow the blood sugar value at several time intervals to
foresee and thereby prevent the onset of diabetes [27]. EHRs even contain time-stamped clinical events and thus support
processes of patient history taking and treatment planning. These temporal occurrences determining patient evolution and
treatment effects are, unfortunately, mostly disregarded in the traditional machine learning models. Deep learning,
especially through recurrent architectures such as RNNs and LSTMs, is capable of leveraging sequential data to learn long-
term dependencies and temporal patterns [28]. This enables medical systems to understand the factors underlying the
progression, anticipate an onset or detect abnormal behavior in its early stages, thereby delivering custom patient-level
interventions. Analysis of sequential data is thus critical to intelligent time-aware healthcare systems [29].

Il. RELATED WORK

The integration of Al and IoT in healthcare is gaining upwards momentum. Innovative strategies and solutions have
targeted diagnosis and disease monitoring and edge intelligence. In the latest advances, methods for privacy-preservation
were suggested, including using cross-device federated unsupervised models based on autoencoders to learn ECG
morphology without bringing together patient data, allowing for wearable analytics in a secure manner [1]. Advanced
algorithms combining CNN feature extraction with attention-based Bi-LSTM have shown their potential in the early
detection of Alzheimer's from loMT-based EEG streams in neurology [2]. Likewise, end-to-end DL-enabled loT systems
have been created for tele-monitoring of chronic illnesses, essentially setting up pipelines from wearable data acquisition
to cloud inference for real-time healthcare [3].

Signal quality continues to be essential, and efforts to develop ECG quality assessment wearable systems using wavelet
scattering features and transfer learning with recurrent layers contribute toward eliminating noisy signals even before
diagnostic analytics [4]. Another focus has been upon generating surrogate ECG from PPG signals with Bi-LSTMs for
cuff-less monitoring with commodity sensors [5]. Representation learning has also paved its ways and has seen low-rank
attention autoencoders for improved arrhythmia detection from sparsely labeled ECG data [6], and masked autoencoders
reconstructing full 12-lead ECG from single-channel input in sparse sensing contexts [7].

Compressed sensing and CNN models have been developed for on-device ECG classification [8] that are extremely low
power and save bandwidth. AloT systems in respiratory applications have also been considered to demonstrate, such as
smartphone and ear-worn pipelines for cough detection [9], and Al platforms that screen for COVID-19 through analyses
of coughs from CNN/RNN [10]. Deep CNN feature extraction from EEG has also improved seizure detection accuracy
beyond conventional methods [11], while attention-augmented recurrent models and heart-rate signals have been employed
to classify sleep-stages on wearables [12].

The years have marked further developments with hardware-software co-designs for edge Al that, for example, saw the
introduction of specialized LSTM processors for real-time blood-pressure prediction from ECG/PPG [13], and Conv-
LSTM architectures fusing ECG and PPG with R-R intervals for continuous blood pressure estimation [14]. Wearable ECG
pipelines have quantified throughput-latency trade-offs to further improve efficiency in edge inference [15]. Multi-sensor
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pipelines with CNN, LSTM, and attention have been proposed for health monitoring in sports to improve athlete condition
prediction [16]. Also, compressed DL models such as ResNet and MobileNet variants proved arrhythmia detection
capabilities on embedded wearables coupled with the cloud backend [17].

AloT systems for activity recognition have passed beyond cardiovascular and neurological grounds, with channel attention-
based autoencoders to enhance HAR from wearable IMU signals, thus laying foundations for context-aware clinical
monitoring [18]. Finally, the open ML challenges pushed the envelope for Parkinson's monitoring, with temporal DL
models scoring highest in freezing-of-gait detection tasks [19]. Finally, ResNet-LSTM hybrids have been investigated for
hypertension monitoring on wearables, validated on datasets but still constrained by inadequate device diversity and battery
profiling limitations [20].

Altogether, these papers map the entire breadth of AloT-driven healthcare innovations, encompassing secure data sharing,
multimodal fusion, edge intelligence, and application-specific pipelines. These studies massively witnessed the progress
being made; however, generalization, clinical validation, generic device heterogeneity, and energy-efficient

implementations remain some major directions in the future research.

Table 1: Deep Learning in AloT Healthcare Systems

Ref | Technique Used Dataset Used Key Findings Results Limitations

[1] | Federated Multi-device Enabled privacy- | High accuracy in | Limited device
Unsupervised ECG datasets | preserving ECG | reconstructing ECG | diversity; poor
Learning (wearable morphology learning | across  federated | generalization to
(Autoencoders) collected) without centralizing | devices. noisy/low-end sensors.

patient data.

[2] | CNN + Attention- | loMT EEG | Early  Alzheimer’s | Improved over | Small cohorts; drift in
based Bi-LSTM datasets  (lab- | detection from EEG | standalone long-term EEG signals

grade sensors, | streams using hybrid | CNN/LSTM not addressed.
small cohorts) | deep learning. baselines.

[3] | DL-enabled 10T | Synthetic + real | Designed IoT-to- | Demonstrated Simulation/emulation;
pipeline (Wearables | wearable cloud tele- | feasibility of | no clinical validation.
— Cloud) chronic disease | monitoring for | scalable DL-driven

data (Sensors) | chronic diseases. monitoring.

[4] | Wavelet-Scattering | Wearable ECG | Built ECG quality | Improved Lacked diverse
Features + | datasets (public | assessment to filter | robustness over | ambulatory noise types.
Recurrent Layers + limited | poor signals pre- | traditional filtering.

ambulatory analytics.
signals)

[5] | Bi-LSTM for ECG | Public PPG- | Enabled cuff-less | Delivered Accuracy varied with
Reconstruction ECG paired | surrogate ECG | promising ECG | physiology and
from PPG datasets generation on | reconstructions. placement.

commodity devices.

[6] | Low-Rank Large ECG | Reduced labeled data | Outperformed Attention layers heavy
Attention arrhythmia needs; boosted | CNN/RNN for wearables.
Autoencoder datasets arrhythmia baselines in

discrimination. accuracy.

[7]1 | Multi-Channel 12-lead ECG | Reconstructed Achieved high- | Generalization to
Masked clinical datasets | missing leads from | fidelity unseen pathologies
Autoencoder single-channel ECG. | reconstructions. uncertain.

[8] | Deep Compressed- | Public  ECG | Reduced Maintained Tested only on public
Sensing + CNN datasets (MIT- | transmission cost | accuracy with less | datasets; no clinical

BIH, etc.) while classifying | bandwidth/power. | validation.
ECG.

[9] | Smartphone/Ear- Real-world Built continuous | Robust detection in | Noise ~ and  device
Worn DL Audio | cough  audio | cough detection | controlled settings. | heterogeneity issues
Models dataset system for remain.

respiratory AloT.
CNN + RNN | COVID-19 Validated cough- | Achieved reliable | COVID-specific

[10] | (Swaasa Al | cough datasets | based screening for | detection accuracy. | cohorts; poor
Platform) COVID-19. transferability.
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CNN for EEG | Public/private Extracted deep EEG | Outperformed Edge optimization
[11] | Feature Extraction | EEG  seizure | features for seizure | hand-crafted absent; subject-transfer
datasets detection. baselines. limited.
Attention- Heart-rate Classified sleep | Achieved  strong | Dependent on
[12] | Augmented RNN signals (sleep- | stages from wearable | performance in | controlled overnight
stage datasets) | HR data. sequential tasks. recordings.
Edge-LSTM ECG/PPG Realized edge | Demonstrated real- | Constrained dataset;
[13] | Hardware Co- | datasets hardware for BP | time inference | long-term drift
Design prediction. feasibility. unaddressed.
Conv-LSTM Multi-sensor Built continuous BP | Outperformed Calibration/per-subject
[14] | Fusion (ECG +PPG | BP datasets estimation model. single-modality variability remain.
+ R-R Intervals) models.
Edge-Inference Wearable ECG | Quantified Showed efficiency | Focus on  system
[15] | Pipelines for ECG datasets throughput/latency of streaming | metrics, not clinical
(Sensors) trade-offs. inference. tasks.
CNN-LSTM- Multi-sensor Predicted athlete | Improved athlete | Athlete-specific
[16] | Attention Cloud | sports wearable | status from time- | health monitoring. | generalization limited.
Pipeline data series signals.
Compressed Public Enabled arrhythmia | Achieved Compression  reduced
[17] | ResNet/MobileNet | arrhythmia detection on | efficiency with | explainability, rare-
datasets embedded wearables. | cloud back-end. class recall.
Autoencoders + | IMU wearable | Enhanced human | Improved context- | Synthetic activities;
[18] | Channel Attention | datasets activity recognition | aware monitoring | limited clinical
(HAR). accuracy. relevance.
Open ML | Parkinson Coordinated  FOG | DL models topped | Risk of leaderboard
[19] | Challenge (DL | wearable detection benchmark. | leaderboard. overfitting; poor free-
Temporal Models) | datasets living validation.
ResNet-LSTM Hypertension Continuous BP/HTN | Showed Limited device
[20] wearable monitoring validated | generalization diversity; no energy
datasets with  LOO cross- | across datasets. profiling.
dataset approach.

I11. RESEARCH OBJECTIVES

IV. PROPOSED METHODOLOGY

Input Data (Heart Disease and Diabetes) ‘

Optimal Features

Trained Model
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Figure 3.1: Flowchart for Proposed Learning Model for Iliness Diagnostic Models Testing and Training

The flowchart 3.1 represents the proposed framework for predicting diseases, utilizing heart diseases and diabetes datasets.
Unprocessed data are gathered, which afterwardager is pre-processed for missing values, for feature normalization, and

finally, for some modeling. This data is then subject to phases of training and testing. During the training part, applying
the Random Forest algorithm identifies optimal features relevant for the medical data, thus reducing noise and
dimensionality. After selecting these features, they are given to an LSTM (Long Short-Term Memory) network for training
so that the network can learn temporal patterns and complex dependencies during medical data processing, yielding a
trained model. The testing phase employs that trained LSTM model to operate on unseen data to observe how well it can
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make predictions. Eventually, a performance evaluation checks for the metrics, i.e., accuracy, precision, recall, and F1
score to assure that the system remains resonable enough for diagnosis and prediction of a disease.

Algorithm: Diagnosis of Disease
Step 1: Data Collection
Data MetabolicCgiabetes «— Collect Diabetes Metabolic Data
Data Metabolicheart «<— Collect Heart Metabolic Data
Step 2: Pre-process Data (Data MetaboliCgianetes, Data MetabolicCheart)
Processed Datagiapetes «— Clean (Data MetaboliCgianetes)
Processed Datagiapetes «— Normalize (Processed Datagiapetes)
Processed Dataneart < Clean (Data Metabolicheart)
Processed Dataneart < Normalize (Processed Dataneart)
Step 3: Feature Fusion ()
Fuse data « Fuse Features (Processed Datagianetes, Processed Dataneart)
Step 4: The best way to extract features (fuse data)
Model «— Random Forest (Fuse data)
Importance Scores « Feature Importance (model)
Selected Features < Select Top Features (Importance Scores)
Step 5: LSTM Classification
Model « Define LSTM ()
Train (model, Selected Features)
Validate (model, Selected Features)
Diagnosis «— Classify (Model, Selected Features)
Output (diagnosis)
A. Data Collection
A. In this step, first two different datasets were considered: one for diabetes and the other for heart disease. These
datasets were then assessed to determine technique suitability.
B. Initial processing
Preprocessing has been done for the heart disease and diabetes datasets. Z-score normalization standardizes the data so that
the voxel has a zero mean and unit variance.
D —u; Q)
0i
B. Data are pre-processed using u; and o; , which stand for the mean and standard deviation, to represent the normalized
data (D, ) @nd the original data (D).
C. Feature Fusion
In this step, both normalized datasets, diabetes and heart disease, are fused together and combined as single normalized
dataset.
D. Model Testing and Performance Evaluation

Dyporm =

The dataset is split into training (70%) and testing (30%b) subsets to validate performance objectively. Evaluation metrics
include accuracy, sensitivity, specificity, precision, recall, and F1-score. These measures provide a holistic assessment
of the system’s diagnostic ability across different disease categories.

V. RESULT AND DISCUSSION

The validation and training precision curves of the proposed model are shown in Figure 3. Similarly, the learning and
verification graph of the suggested model is shown in Figure 4. Four performance metrics covered in this section allow for
comparing the performance of the suggested model against state-of-the-art approaches for enhancement. The suggested
model was built using Python, Keras, and TensorFlow and fine-tuned with Adam optimizer (learning rate: 0.0001). Using
the Google Colab Tesla T4 GPU and 25 GB of RAM, the model was trained for 100 epochs on the combined set of data
prep with a 70:30 training-to-testing ratio.
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Table 2: Performance Assessment of the Suggested Model

Sensitivity Specificity Accuracy
Heart 0.982 0.999 0.981
Diabetes 0.984 0.992 0.976
Normal 0.985 0.985 0.985

Accuracy, specificity, and sensitivity are the results of the diagnosis, which are summarized in Table 2. Cardiac disease has
the highest sensitivity of 0.982, specificity of 0.999, and an accuracy of 0.991. Similarly, the values for diabetes stand at
0.976 for sensitivity, 0.992 for specificity, and 0.984 for accuracy. In the same respect, the values for the normal category
are 0.985, 0.985, and 0.985 for accuracy, specificity, and sensitivity, respectively. A high score in all three measures is
thereby indicative of the high ability of the model in diagnosing each disease. Particularly, for cardiac diseases, the
diagnosis has an absolutely perfect specificity of 100%, which implies that there are no false positives.

Sensitivity

Sensitivity Evaluation of Prediction

99.50%
99.00%
98.50%
98.00%
97.50%
97.00%
96.50%

B Sensitivity W Specificity
Accuracy Disease

Figure 5: Sensitivity Evaluation of Prediction

Specificity

99.50%
99.00%
98.50%
98.00%
97.50%
97.00%
96.50%

Sensitivity ® Specificity M Accuracy

Figure 6: Specificity Evaluation of Prediction

Disease

The disease prediction result's sensitivity evaluation is displayed in Figure 5, with about 98.4% average sensitivity. The
specificity of the evaluation of the disease prediction result, with an average specificity of almost 99.2%, is displayed in
Figure 6.
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The accuracy of the disease prediction result, with an average specificity of almost 98.1%, is displayed in figure 7 and
figure 8 showing comparative state-of art fro hear diagnosis..

RESULT VALIDATION

The diagnostic performance metrics attest to the model's marvelous ability to predict heart disease, diabetes, and normal
conditions. For heart disease detection, the model could achieve a sensitivity of 98.2%, a specificity of 99.9%, and an
accuracy of 98.1%, with excellent detection and minimal false positives. In diabetes detection, it has reached the sensitivity
of 98.4%, specificity of 99.2%, and accuracy of 97.6%, always giving consistent predictions. In the cases of the normal
(healthy) class, all measures for classification stood at 98.5%, which meant that classification was done in a well-balanced
manner without bias. When each of these percentages is compared against the 100% idealized "State-of-the-Art"
percentage, they offer evidence that the model achieves near-perfect performance and is of real use in clinical settings. Of
all, the high accuracy of the method strongly attests to its robustness and applicability as an undoubted decision-support
mechanism in clinical practice.

Comparative State-of-Art for Diabetes Diagnosis

100.50%

100.00%
99.50%
99.00%
98.50%
98.00%
97.50%
97.00%
96.50%
96.00%

Sensitivity Specificity Accuracy
M Diabetes Diagnosis M State-of-the-Art
Figure 9: Comparative State-of-Art for Diabetes Diagnosis

VI. CONCLUSION AND FUTURE WORK

This research paper successfully developed and validated an Al-loT-based predictive model by using Random Forest
feature selection with an LSTM-based classifier for disease diagnosis. After merging the metabolic datasets of heart disease
and diabetes, models gained near-perfect levels of diagnostic accuracy, contrary to the classical machine learning
approaches. The findings support the proposed system and assure its reliability, scalability, and clinical use as a next-
generation healthcare solution. That said, the framework can be further expanded to cater to other chronic and acute
diseases, incorporating multimodal datatypes such as imaging and genomics while being deployed on loT-enabled smart
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platforms in real time. Further, with explainable Al, federated learning, or blockchain will surely expedite building trust,
interpretability, and security. Adding reinforcement learning approaches for adaptive treatment suggestions can further
direct personalized patient care and deliver more long-term healing results. With all of these, the proposed system has solid
potential to further develop into a fully-fledged, real-time, and secure smart solution for healthcare decision support toward
proactive and personalized patient care.
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